Outline

- Indoor light harvesting
- Markets and applications of indoor PV
- Photovoltaic technologies
- Test conditions: indoor vs outdoor
- Strategies for high indoor efficiencies
- Indoor perovskite solar cells
- Challenges and perspectives
Photovoltaics for indoor light harvesting

OUTDOORS
- Solar farms (MWs)
- Building-integrated

INDOORS
Harvesting of artificial light inside buildings
- Product-integrated (μW-mW)

✓ Improvement in buildings’ **sustainability**
✓ Reduction of **battery** usage
✓ **Portability**
• Market rise associated with **lowering of consumers products’ cost**
• **Fastest growth** among alternative small volume PV markets
Applications of indoor PV

- **Consumer** electronics
- Healthcare and **biomedical** devices
- Building-integrated and indoor appliances
- **Communication** technologies
- WSN and RFID
- Sensors for the **Internet of Things**
Photovoltaic technologies

First Generation
Crystalline silicon solar cells

Second Generation
Thin film solar cells

Third Generation
DSSC, OPV, perovskite, multi-junctions

Crystalline Silicon cells
Mono-crystalline cells
Efficiency: 18%~25.6%
Multi-crystalline cells
Efficiency: 17%~20.8%

Thin film solar cells
CdTe cells
Efficiency: 18.3%~22.1%
Amorphous silicon cells
Efficiency: 13.4%
CIGS cells
Efficiency: 20.4%~22.6%

Multi-junction cells
Efficiency: ~45%

NanolInnovation 2020, G. Lucarelli
Photovoltaic technologies – 3rd generation

DYE-SENSITISED SOLAR CELLS (DSSC)

- Photosensitive organic dye
- Efficiency: 12.3%

ORGANIC PHOTOVOLTAICS (OPV)

- Donor/acceptor system of polymers and small molecules
- Efficiency: 17.4%

PEROVSKITE SOLAR CELLS (PSC)

- Hybrid organic inorganic perovskite crystalline absorber
- Efficiency: 25.2%

http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
Photovoltaic technologies – 3rd generation

DYE-SENSITISED SOLAR CELLS (DSSC)
- Photosensitive **organic dye**
- Efficiency: 12.3%

ORGANIC PHOTOVOLTAICS (OPV)
- Donor/acceptor system of polymers and small molecules
- Efficiency: 17.4%

PEROVSKITE SOLAR CELLS (PSC)
- Hybrid organic inorganic **perovskite crystals**
- Efficiency: 25.2%

- Low-cost
- Printability
- Flexibility
- Colour-tunable, semi-transparent

NanolInnovation 2020, G. Lucarelli

PV performance evolution @STC

PEROVSKITE SOLAR CELLS*

3.8% (2009) → 25.2% (2019)

*performance at 1 sun (1000 W/m²)

...what happens in indoor conditions?
Outdoor vs Indoor

STANDARD TEST CONDITIONS

<table>
<thead>
<tr>
<th>Temperature</th>
<th>25 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irradiance</td>
<td>1000 W/m²</td>
</tr>
<tr>
<td>Air mass</td>
<td>1.5</td>
</tr>
</tbody>
</table>

~100 klx

INDOOR ILLUMINATION

- Low light: 50 lx
- Living room: 200 lx
- Office: 500 lx
- Supermarket: 1000 lx

Different optimization of indoor PV compared to outdoor cells!
Strategies for highly efficient indoor PV

❖ Bandgap engineering

- Eg opt. @AM1.5G = 1.1 eV
- Eg opt. @Indoor = 1.9 eV

Compositional tuning of perovskite:

- Eg increase 1.6 eV -> 1.8 eV
- PCE increase 30% -> 36%
Strategies for highly efficient indoor PV

❖ Suppression of charge recombination

- Minimization of dark currents by insertion of compact, defect-free transport layers

\[\text{TiO}_2 \text{ electron transporting layer (ETL)} \]

Vapour-deposited (ALD) film: PCE > 10%

Solution-processed (SG) film: PCE < 1%

Strategies for highly efficient indoor PV

- **Suppression of charge recombination**

 - Minimization of trap-mediated recombination by **morphological control** of the active layer

 [Graph and images showing the process of charge recombination suppression]

Strategies for highly efficient indoor PV

❖ Light absorption and charge transport

- Dilution of electrolyte increases transparency (light absorption) of DSSC
- Increase in active layer thickness improves photogeneration in amorphous Si

Indoor perovskite solar cells

Composite SnO$_2$/MgO ETL for rigid PSCs

- MgO interlayer **blocks recombination** (insulating thin layer)
- **Reduces ETL roughness** and defects at interface

![Current Density vs Voltage Graph](image)

26.9% @ 400lx
25.0% @ 200lx

![Diagram of Solar Cell](image)

- ITO/SnO$_2$
- MgO
- PVK
- SpiroMeOTAD
- Au

NanoInnovation 2020, G. Lucarelli

Indoor perovskite solar cells

Flexible PSCs on R2R-coated ultrathin glass

- Optimal optical, electrical, surface properties and bendability of flexible glass

Nanoinnovation 2020, G. Lucarelli

Indoor perovskite solar cells

Flexible PSCs on R2R-coated ultrathin glass

- Enhancement of electron lifetime and charge extraction with **mesoporous scaffold**
- Suppression of **leakage currents**
Progress of indoor PV

Ref [20] Theoretical efficiency limit 46% for fluorescent light

Indoor PCE (%)

Published year

OPV
DSSC
III-V SC
PVSC
Progress of indoor PV - flexible

Perovskite solar cells on R2R-coated flexible glass

Maximum Power Density [μW cm⁻²] vs. Illuminance [lx]

- a-Si FL
- GaAs FL
- DSSC FL
- DSSC LED
- OPV FL
- OPV LED
- PSC LED

21-23%
Challenges & perspectives

- Big margin of efficiency improvement for indoor PV (theoretical max. 50-60%, depending on type of lamp)
Challenges & perspectives

- Low-cost **printing techniques**
- Replacement of expensive and rare materials
- Predicted **increasing production volumes**
Challenges & perspectives

- Milder operating conditions indoor vs outdoor
- Efficient encapsulation methods
- Compositional engineering and material optimisation for stable indoor PV
Conclusions – how to choose the best indoor PV?

Functionality
(Transparency, colour, flexibility, weight, easy integration)

Efficiency
(STC, indoor low lighting e.g. CFL and LED lamps, 200-1000 lx)

Stability and environmental impact
(Toxic elements content, green solvents, lifetime in indoors)

Cost and commercialization
(Market readiness, production volumes, cost of raw materials and processes)
Acknowledgments

Prof. Thomas M. Brown
Dr. Sergio Castro-Hermosa
Dr. Janardan Dagar
Dr. Francesco Di Giacomo
Prof. Francesca Brunetti
Dr. Francesca De Rossi
Dr. Babak Taheri

Prof. Franco Cacialli
Dr. Andrea Zampetti

Prof. Maria Adriana Creatore
Dr. Valerio Zardetto

Dr. John Fahlteich
Dr. Matthias Fahland
Michiel Top

@CHOSE_UniRoma2
CHOSE Center for Hybrid and Organic Solar Energy
Chose Polo Solare Organico
www.chose.uniroma2.it
Thanks for your attention!