

Organic Electronics: Overview and Applications

L. Mariucci

CNR – IMM

Roma

OUTLINE

- Organic materials for flexible electronics
- Printing techniques
- Organic devices and applications

Introduction

Organic materials for flexible electronics

- Flexibility
- ✓ Low process temperature
 - (~ 100°C)
- ✓ Solubility
- **✓** Biocompatibility
- ✓ Biodegradability

- Flexible, bendable plastic substrates
- Non-conventional substrates(paper, fabrics, ..)
- Printing techniques
 - Low-cost processes
- Environmental fiendly
- > Implantable devices

Organic Materials for electronics: semiconductors

- P-type organic semiconductors
- Based on benzene and/or thiophenes rings

N-type (less stable and lower mobility):

Fullerene

Perylene

Organic Materials for electronics

Insulatrors: Polymers

Conductors: organic polymers and nanoparticle

dispersions

Printing techniques

- ➤ These printing techniques are available in the NanoMicroFab lab
- Low-cost, large area (up to A4), low temperature
- > Require inks or paste with different viscosity
- Scalable for roll to roll process
- Relatively low resolution (down to 10-20 μm)

New high resolution Printing techniques

Femtoliter ink-jet

NANOMICROFAB

Fully printed OTFTs: manufacturing process

PEN - Teonex Q65FA 100 µm thick

S/D plate typical cell

cell

OGI plate

cell

Source/Drain

Ag (InkJet+SAM) or PEDOT (gravure) Thickness ≈ 35-70 nm Annealing 120° oven

OGI

GRAVURE printing Cytop CTL809M Thickness $\approx 400 \text{ nm}$ Annealing 100° oven

INKJET printing ANP DGP40 LT-15C Thickness $\approx 200 \text{ nm}$ Annealing 80° oven

Inkjet printer: Dimatix DMP 2831 Gravure printer: Labratester NSM

NANOMICROFAB OTFT applications

OTFT circuits

Inverter

Circuits have been designed by using the OTFTs compact model that we have developed

L. Mariucci

OTFT-applications

Ionizing radiation detectors

INDIRECT DETECTING SINGLE PIXEL (NEPRO)

DIRECT DETECTING SINGLE PIXEL (PHOX)

Flexible Ionizing Radiation dEtectors – FIRE project (INFN – CSN5 Call 2019)

PROTON THERAPY DOSIMETRY

Detectors for Proton
therapy for prostate cancer

Plastic optical fibers

Temperature sensor

Body

temperature

OE applications

Extended gate OTFT – EG-OTFT

OECT on a cotton fiber.

saline sensing in sweat

Organic Electrochemical Transistors OECT

Organic conductor + Electrolyte.

The analyte diffusion changes the organic conductivity

Mariucci

Implantable devices

- Biocompatibility
- Flexibility and conformability
- Possible biodegradability

Organic Cell Stimulating and Sensing Transistors (O-CSTs) For neural activity monitoring (V. Benfenati et al.)

Devices for treatment of spinal cord injury

SUMMARY

- Organic materials and printing techniques allow to develop devices on flexible and non-conventional substrates, widening the fields of application of the flexible electronics
- Wearable, biocompatible, biodegradable electronic circuits and sensors are some of the main applications for organic flexible electronics