



# Materials, Sensors and Actuators in MEMS technology evolution

Andrea Picco, PhD 18 September 2020



### We are creators and makers of technology



## Where you find us

Making **driving** safer, greener and more connected





Enabling the evolution of industry towards smarter, safer and more efficient factories and workplaces





Making homes & cities smarter, for better living, higher security, and to get more from available resources





Making everyday **things** smarter, connected and more aware of their surroundings





## MEMS for sensing and actuating



**Optical** 

Micro-actuators





#### Timeline





Consumer



High Volume Production

Automotive

20 Years of MEMS in ST

Industrial

#### Silicon vs steel





| Property                      | Silicon               | Steel                 |
|-------------------------------|-----------------------|-----------------------|
| Young's modulus               | 180 GPa               | 210 GPa               |
| Yield strength                | > 1 GPa               | 4.2 GPa               |
| Density                       | 2.3 g/cm <sup>3</sup> | 7.9 g/cm <sup>3</sup> |
| Thermal expansion coefficient | 2.3 ppm/K             | 12 ppm/K              |



## An example of motion MEMS: accelerometer





#### Accelerometer: how it works



acceleration is measured by means of mass displacement









## Motion MEMS: images



$$C = \frac{\varepsilon_0 \cdot S}{d}$$





## Ω<sub>z</sub> z v x

## Pitch Paw

beccheggioimbardata

rollio.

## THELMA gyroscope at work













## Motion sensors: how they are made





## Motion MEMS today

Optical Image
Stabilization (OIS)
For Smartphones

New Market penetration
Cost effectiveness

Recreational & professional Drones



Addressing existing and new applications and markets





Virtual Reality

High accuracy



## MEMS pressure sensor

- ❖ 4 p-Si resistors implanted on a flexible silicon membrane
- **❖ Pressure induced stress is sensed by piezoresistive effect**
- 4 piezoresistors connected in a Wheatstone bridge configuration



## From cavity to full molded package







PACKAGE FOOTPRINT: 2.5 mm x 2.5 mm



#### MEMS for micro-actuation

Convert an electric current into a mechanical output causing the displacement or rotation of a mechanical structure



Micro-machined device able to move a tiny object, either liquid or solid, with relatively small force and along a small distance



The MEMS actuators use different transduction schemes for their operation

Piezo-electric + Electro-static





## Micromirrors portfolio

Augmented Reality



Visible Projection

Small volume occupation

**Low Power Consumption** 

Projection



Visible Projection

**High Brightness** 

High Resolution

Gesture & Face Recognition



Infrared Projection

Small volume occupation

Large Scan Angle





#### Piezoelectric actuation: PZT



- The piezoelectric effect is a reversible process
  - Direct piezoelectric effect: Strain → Charge (Sensing applications)
  - Converse piezoelectric effect: Voltage → Stress/Strain (for Actuators)



#### What is PZT

Solid solution: Pb(Zr<sub>x</sub>,Ti<sub>1-x</sub>)O<sub>3</sub> – Perovskite structure







## Thin film piezo inkjet



- Working principle: ink volume displacement by a PZT actuated membrane
- Thin-Film Piezo vs Thermal Inkjet Benefits
  - Compatibility with wide variety of inks
  - Higher printing speed
  - Superior print output quality
  - Extended print-head lifetime
  - Digital printing vs. analog printing



#### 600 0.8 ▲ 0.0993 0.6 0.5 0.1 0.3 0.2 0.1 200 0.08 500 0.06 0.04 0.02 $\times 10^3$

## Thin film piezo inkjet







## Polight tlens®

poLight TLens® unique performance enables new use cases for smartphones not yet to be seen!



"We managed to replicate the human eye"





## Working principle





A piezoelectric thin film acts like the muscle

#### Device actuation





## Optical power





#### Tlens®



























#### Conclusions

Sensors and actuators are enabling more and more sophisticated technologies

**Great demand of development of new actuators based on PZT thin films** 

Just as for sensors, actuators are now waiting for new disruptive applications



## Thank you



ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <a href="https://www.st.com/trademarks">www.st.com/trademarks</a>.
All other product or service names are the property of their respective owners.

