

Influence of chitosan on a polysaccharide blend *in situ* gelling powder for wound dressing

Chiara Amante

PhD Student in Drug Discovery and Development, Department of Pharmacy University of Salerno, Fisciano, (SA), Italy

18/09/2020

Wound dressing

Cutaneus ulcers

- Lower limb ulcers
- Diabetic foot
- Bedsores

Conventional dressings

- Local irritation, contact sensitization and immune reactions
- Frequent dressing changes
- Dehydration of the wound bed
- Traumatic removal

Ideal wound dressing

- Absorption of exudate
- Transpiration
- Adhesiveness to the wound site
- Easy application and atraumatic removal
- Drug/adiuvant release
- Inexpensive

Wound dressing market

 The global advanced wound dressing market was valued at USD 6.32 billion in 2018 and it is predicted to reach an CAGR (Compound Annual Growth Rate) of 4.3% over the forecast period

In situ gelling powders

Micro particle carriers in form of dry powders

In situ

...and aggregates on contact with exudate,

- Easy application
- Absorption of exudate
- Conformability to the surface of the wound
- Atraumatic removal
- Release of active pharmaceutical ingredients (API)

Production by mini spray drying

> Economic Biopolymer

2019 Del Gaudio P., et al. PCT /IB2018/058742 May 16th 2019 IN SITU GELIFYING POWDERS (WO/2019/092608)

Hydrogel

Polymers

Alginate with high content of M induce the production of cytokines by human monocytes, a very useful process in the healing of chronic wounds *

Amidated **pectin** with a low degree of methylation is able to increase in situ gel forming rate

ОН

Н

w.

Chitosan low molecular weight enhance *in situ* gelification *

Thomas et al., (2000). Alginates from wound dressings activate human macrophages to secrete tumour necrosis factor-alpha. Biomaterials. * R.C. Goy, D.d. Britto, O.B.G. Assis, A review of the antimicrobial activity of Chitosan, Polymeros 19 (2009) 241–247 * *

Alginate/pectin/chitosan powders

- Process yield depends on chitosan concentration
- Mean diameter is related to the concentration of chitosan

Sample code	Polymers concentration (w/V)	Polymers ratio	Yield (%)	Mean diameter (nm)
APC_111	0.15	1:1:1	62.12	7.23
APC_113	0.15	1:1:3	73.14	2.43
APC_117	0.15	1:1:7	73.57	2.74

• Increasing of chitosan leads to an higher surface roughness

Alginate/pectin/chitosan powders

• Fluid uptake ability: maximum swelling in about 5 minutes

<u>**Conditions</u>**: Franz cell filled with SWF (simulated wound fluid), 37°C</u>

In situ gelling powders loaded doxycycline

□ Wide antibacterial spectrum against Gram-positive and Gram-negative bacteria *

□ Inhibition of host matrix metalloproteinases hyper expressed in chronic wounds **

* Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. *Microbiol Mol Biol Rev.* 2001;65(2):232-260. doi:10.1128/MMBR.65.2.232-260.2001

* * García, R. A., et al., (2005). Molecular Interactions between Matrilysin and the Matrix Metalloproteinase Inhibitor Doxycycline Investigated by Deuterium Exchange Mass Spectrometry. 67(4), 1128-1136.

Alginate/pectin/chitosan powders loaded doxycycline

• Encapsulation efficiency (e.e.) depending on the relative amount of chitosan into the feed

Sample code	Polymers concentration (w/V)	Polymers ratio	Doxycycline concentration % (w/w)	Yield (%)	Mean diameter (nm)	Drug content (%)	E.E. (%)
d) APCD_111_2D	0.15	1:1:1	2	62.1	9.64	1.32	67.39
e) APCD_113_2D		1:1:3	2	70.82	3.09	1.42	71.73
f) APCD_117_2D		1:1:7	2	73.88	2.43	1.51	77.24

Alginate/pectin/chitosan powders loaded doxycycline

• Fluid uptake ability: APCD_117_2%D showed a lower swelling than blank formulation

Doxycycline release

- In vitro doxyclycine release
- Similiar trend for APCD 117_2%D and APCD 113_2%D
- Higher amount of doxycycline released for APCD 111_2%D

Biological test

Antimicrobial test

 Disc diffusion assay on Staphylococcus aureus (ATCC 6538)

Sample	Amount of doxy (µg)	Area (mm²)	Amount of doxy N (µg)	Area N (mm ²⁾	∆ area
Doxy	1.55	759.36	1.55	759.36	
APCD _111_2D	1.59	780.83	1.55	761.18	0.24%
APCD_ 113_2D	1.58	878.88	1.55	862.19	13.54%
APCD_117_2D	1.55	934.29	1.55	934.29	23.04%

Biological test

• **SDS-PAGE gelatin zymography**: *d*oxycycline released from hydrogel inhibited MMP-2 even at 0.5 µg and its effect was stable up to 72 h

Conclusions

Chitosan affected the particles properties leading to better characteristics

Formulations did not show cytotoxic activity inducing IL-8 release at the application site

All formulations showed a prolonged release of doxycycline enabling higher efficacy against bacteria and inhibiting MMP-2 activity

Thank you for the attention

Chiara Amante E-mail: camante@unisa.it