

Hybrid inorganic nanoparticles for optical imaging and sensing

Luca De Stefano, PhD

Institute of Applied Sciences and Intelligent Systems (ISASI)

Unit of Naples

National Research Council

Email: luca.destefano@na.isasi.cnr.it

ISASI – Unit of Naples

29 staff members + 20 PhD students and postdocs

Units

ISASI- Headquarter (Pozzuoli-NA)

ISASI – Naples

ISASI – Lecce

iMEG

Main Research Activities

- □ Photonics for Space, Avionics and Energy
- ☐ Optoelectronic Chemical and Biological Sensing
- Nanodevices for theranostics

Collaborations

Luca De Stefano, PhD Ilaria Rea, PhD Principia Dardano, PhD

- R. Moretta, post Doc scientist C. Schiattarella, PhD
- C. Tramontano, PhD student
 - B. Miranda, PhD student
 - G. Chianese, fellowship
 - C. Tammaro, PhD student
- M. Battisti, PhD (Materias)
- S. De Martino, PhD (Materias)

Hybrid Inorganic Nanomaterials

Fabrication (top-down)

Metals

Synthesis (bottom-up)

Polymers

New properties, features and applications

Semiconductors

Modification (wet, dry)

Hydrogels

Characterization (optical, electrical)

Inorganic nanostructured materials

From bulk... ...to the nanoscale

Appearance of quantum effects @macroscopic scale

- High surface area
- Efficient light emission
- Long photoluminescence lifetime
- Tunable optical response
- Biocompatibility

Biophotonics

(Molecular and medical diagnostics)

Biosensing

Porous silicon (PSi)

Well-established fabrication technology

Quantum confinement model

Size-dependent energy levels

$$\frac{1}{\tau} = \frac{1}{\tau_r} + \frac{1}{\tau_{nr}} = \frac{16\pi^2}{3} n \frac{e^2}{h^2 m^2 c^3} E_0 |\langle i_{CB} | \hat{p} | f_{VB} \rangle|^2$$
(1)

Carrier relaxation dynamics

PSi is a disordered system:
$$I(t) = I_0 e^{-\left(\frac{t}{\tau}\right)^{\beta}}$$
 (2)

Graphene oxide (GO)

I. Rea et al., J. Phys. Chem. C 118(47) 27301-27307 (2014).C. T. Chien et al., Angew. Chem. Int. Ed. 51(27), 6662-6666 (2012).

Large bandgap hybrid semiconductors

Fluorine doped-Zinc oxide (ZnO-F)

DI C Ma

Prof. A. Aronne

Zirconia-acetylacetone (ZrO₂-acac)

Titania-dibenzoymethane (TiO₂-dbm)

- ✓ Nanoparticles (average size=400 nm)
- ✓ EPR signal (ROS-generating)
- ✓ Characteristic efficient PL emission
- ✓ Colloidal stability in water-based solutions

Bioimaging

Biosensing

Bioimaging

Biosensing

Graphene oxide/porous silicon device for early diagnosis of Brugada Syndrome

Nucleic acids-based technology for early diagnosis of genetic diseases

Brugada Syndrome (or Sudden Death Syndrome)

Point-mutations in the SCN5A gene

Nucleic acids (DNA, RNA, PNA) as biorecognition elements

- Detection specificity at the single-base level
 - PNAs are synthetic analogous of DNA
 - The PNA/DNA hybridization is stronger than the one between DNA/DNA strands

Hybrid biosensing device based on porous silicon

Non-luminescent PSi structure

- ✓ Versatile surface chemistry
- ✓ Tunable photonic properties

Graphene oxide nanosheets

- High density of functional groups
- ✓ Characteristic PL emission

Fabrication of PSi/GO chip

Covalent grafting of GO on macroporous PSi chip via carbodiimide chemistry

Optical characterization of PSi/GO chip

$$R(\lambda) = r_1^2 + r_2^2 + 2r_1r_2\cos\left[2\pi\left(\frac{2n_{PSi}L}{\lambda}\right)\right]$$

Fast Fourier Transform (FFT) of PSi/GO optical spectrum

Steady-state PL analysis

Preparatory study on a model bioprobe: protein A (1)

Protein A anchoring on GO nanosheets in aqueous suspension

Preparatory study on a model bioprobe: protein A (2)

Protein A anchoring onto PSi/GO chip

FITC-labeled PrA anchoring onto PSi/GO chip

Preliminary PNA/DNA hybridization detection

submitted to Nanomaterials

PNA/DNA hybridization detection at pH 5

Bioimaging

Biosensing

Towards label-free biosensing with fluorine-doped zinc oxide nanostructures

ZnO nanostructures synthesis and characterization

Prof. A. Aronne

PL spectra (λ_{exc} = 325 nm)

- $\hbox{G. P. Papari et al., J. Phys. Chem. C 121(29), 16012-16020 (2017).}\\$
- G. Chianese et al., Appl. Sci. 9, 3380 (2019).

nZnO(-F) surface functionalization and bioprobe anchoring

Covalent conjugation of PrA-FITC

G. Chianese et al Appl. Sci. 9, 3380 (2019).

Towards label-free biosensing with ZnO-F nanostructures

Conjugation of PrA at different concentrations: $\Delta I_{PL}(\%) = \left| \frac{I_{PL}(6 \, mg/mL) - I_{PL}(0)}{I_{PL}(0)} \right| \times 100$

Bioimaging

Biosensing

Luminescent porous silicon nanoparticles for in vivo imaging

Luminescent probes for bioimaging based on semiconductor nanocrystals

- Tunability of absorption and emission wavelengths
- Excellent resistance to photobleaching
- High toxicity of commonly employed semiconductors

Luminescent porous silicon nanoparticles for bioimaging

Electrochemical etching of p-type Si:

- Mechanical size reduction and sonication in isopropanol
- Storage in isopropanol

10³

600 nm
650 nm
700 nm
7 750 nm
0 20 40 60 80 100 120 140 160 180 200
Time (μs)

PSi degrades into harmless Si(OH)₄ in physiological environment!!!

Modification of PSi nanoparticles for bioimaging

Thermal hydrosilylation with undecylenic acid (UA):

Electrochemical etching of p-type Si (H-terminal NPs)

PSiNPs

J. Joo et al., Appl. Phys. Lett. 108, 153111 (2016). C. Schiattarella et al., Appl. Phys. Lett. 114, 113701 (2019).

Thermal hydrosilylation with undecylenic acid (COOH-terminal NPs)

h-PSiNPs

(h-)PSiNPs optical characterizations in IPA medium

Material	PL lifetime @ 650 nm	Stretching factor β
PSiNPs	31.8 ± 0.6 µs	0.86 ± 0.01
h-PSiNPs	31.5 ± 0.3 µs	0.90 ± 0.02

PL quantum yield

$$\frac{QY_{NPS}}{n_{IPA}^2 \alpha_{NPS}} \bigg|_{\lambda_{ex}} = \frac{QY_{L-T}}{n_{H_2O}^2 \alpha_{L-T}} \bigg|_{\lambda_{ex}}$$

$$QY_{PSINPs} = 12(5)\%$$

C. Schiattarella et al., Appl. Phys. Lett. 114, 113701 (2019).

Optical and morphological stability in physiological medium

(h-)PSiNPs behavior in PBS (pH = 7.4) over time

Next step: in vitro study

24

In vitro study: viability and fluorescence imaging of HeLa cells

Hydra vulgaris as in vivo model

Simpler than vertebrates with central nervous system and specialized organs but more complex than cultured cells

Poly-L-lysine conjugation to surface-modified PSiNPs

Fluorescence imaging of luminescent PSiNPs in Hydra

(365 nm excitation)

Fluorescence imaging of luminescent PSiNPs in fixed Hydra

Endogenous emission represents a **crucial obstacle** when carrying out fluorescence imaging studies on more complex tissues/organisms

Time-gated fluorescence imaging technique

In vivo time-gated fluorescence imaging of Hydra vulgaris

Conclusions

Luminescent porous silicon nanoparticles as label-free probes for bioimaging

- The optical and stability properties of highly luminescent PSiNPs have been investigated and characterized before and after surface functionalization
- Time-gated PL imaging *in vivo* has proved PSiNPs uptake in *Hydra vulgaris* organism, overcoming the issue of endogenous emission

Graphene oxide/porous silicon device for Brugada Syndrome diagnosis

- Tobus hybrid chip that combines the photonic properties or a macroporous PSi repuday and the characteristic PL emission from GO has been developed
- The PSi/GO nanocomposite has been tested for the detection of the SCN5A gene pointmutation associated to Brugada Syndrome

Towards label-free biosensing with fluorine-doped ZnO nanostructures

- An analysis of the optical behavior of ZnO and fluorine-doped ZnO nanostructures has been carried out
- The higher specific surface area of F-doped ZnO resulted in an enhancement of the response of the device with respect to the undoped case after bioprobe conjugation

Name. 15-18 September

Conclusions

Luminescent porous silicon nanoparticles as label-free probes for bioimaging

- The optical and stability properties of highly luminescent PSINPs have been in estimated and scharacterized before and after surface functional ration.
- Time-gated Plannaging in vivo has proved PSINPs uptake. Easte vulgaris of vercoming the issue of endogenous emission

Graphene oxide/porous silicon device for Brugada Syndrome diagnosis

- A robust hybrid chip that combines the photonic properties of a macroporous PSi monolayer and the characteristic PL emission from GO has been developed
- The PSi/GO nanocomposite has been successfully tested for the detection of the SCN5A gene point-mutation associated to Brugada Syndrome

Towards label-free biosensing with fluorine-doped ZnO nanostructures

- I are used out the optical behavior of ZnO and fluoring-doped ZnO nanostructure has
 - The digher specific surface are at 15-doped ZnO resulted in an enhancement of the response of the device with respect to the undoped case after bioprobe conjugation

 Nann Rome, 15-18 September

Conclusions

Luminescent porous silicon nanoparticles as label-free probes for bioimaging

- The optical and stability properties of highly luminescent PSiNPs have been in estigated and characterized before and after surface functionalization
- ime-gated PL imaging *in vivo* has proved PSiNPs uptake in *Hydra vulgaris* of vercoming the issue of endogenous emission

Graphene oxide/porous silicon device for Brugada Syndrome diagnosis

- A robust hybrid chip that combines the photonic properties of a macroporces PS monolayer and the characteristic PL emission from GO has been developed.
- The PSi/GO nanocomposite has been tested for the detection of the SCN5A gene pointnutation associated to Brugada Syndrome

Towards label-free biosensing with fluorine-doped ZnO nanostructures

- An analysis of the optical behavior of ZnO and fluorine-doped ZnO nanostructures has been carried out
- The higher specific surface area of F-doped ZnO resulted in an enhancement of the response of the device with respect to the undoped case after bioprobe conjugation

