Direct and Indirect Magnetic Force Microscopy (MFM) in Histology

Gunjan Agarwal

Mechanical and Aerospace Engineering

Biomagnetism

Sources

- Super-paramagnetic: Iron
 - Ferritin, transferritin, hemoglobin, NTBI
- Diamagnetic: Calcium

Tissues

- Liver (ferrihydrite)
- Spleen (ferrihydrite)
- Serum (?)
- Acute injury (ferrihydrite)
- Chronic plaques (maghemite)

Ferritin

- The major iron storage protein in biological systems
- Globular protein complex (480 kDa):
 24 subunits including heavy (H-Ferritin) and light (L-Ferritin) chains

- Exists as:
 - Apoferritin (without iron)
 - Holoferritin (with iron)
 - ■Iron core is mostly ferrihydrite, up to 4500 atoms
 - Superparamagnetic in nature

Diagnostic Tests for Iron

Non-invasive:

- MRI (liver, spleen, plaques)
- Biosusceptometry
- Serum proteins (ferritin, transferrin)
- Serum iron

Invasive

- Histochemical stains:
 - Perl's: (Fe³⁺)
 - Turnbull: (Fe²⁺),
- Immunohistochemistry (ferritin)
- Analytical TEM

Problems:

- Mismatch between Noninvasive and invasive mapping
- Total iron is measured (size, density, oxidation state unknown)
- Total ferritin is measured (apo vs. holo ferritin unknown)
- Mismatch between iron vs. ferritin mapping
- Chemical environment is different in non vs. invasive imaging (eg. fixatives)

Our goal

Bridge the gap between Invasive and Non-invasive approaches for iron characterization in tissues

Non-invasive (Imaging)

(MRI, Biosusceptometry)

Invasive (Histology)

(Histochemical stains, TEM)

Magnetic properties

Chemical properties

Magnetic Force Microscopy

Magnetic Force Microscopy

- High sensitivity
- High Spatial resolution
- Label free
- Available on Commercial AFMs

Direct MFM of a Magnetic Tape

Direct MFM of Ferritin

Direct MFM of Ferritin and Apoferritin

MFM in Histology

Experimental system:

Rodent spleen and spinal cord

Experimental approach:

Light microscopy

- Tissue sections (~ 5 μm thick, in 4% PF) on glass
- Histochemical stain (Perl's)
- Magnetic Force Microscopy (MFM)
 - ASYMFMHM probes
 - Multimode AFM (Nanoscope 3a controller)

Electron microscopy

- Transmission electron microscopy (TEM)
- Energy Dispersive Spectroscopy (EDS)
- Electron energy loss spectroscopy (EELS)

MFM of Healthy Tissue

Objectives:

Effect of chemical fixatives

Detection of MFM signal

Verification of MFM signal

Rodent spleen: Perl's staining

Size(z) of intensely stained regions ~ 20 to 40 μm^2

Rodent spleen (effect of fixative): Perl's staining

MFM of fixed and unfixed tissue

Detection of MFM signal

Long range detection

Verification of MFM signal: TEM

Size(z) of iron-rich lysosomes < 0.2 μ m²

Energy Dispersive Spectroscopy

- MFM signal obtained from lysosomes (regions ~ < 0.2 μm²)
- No MFM signal from mono-disperse cytoplasmic ferritin

MFM of Healthy Tissue

Objectives:

Effect of chemical fixatives

MFM signal is not affected by fixatives

Detection of MFM signal

MFM signal present in iron-rich regions AFM (non-MFM) probe cannot detect MFM signal

Verification of MFM signal

Size of MFM signal corresponds to iron rich lysosomes

MFM of Diseased Tissue

Objective:

Is there a difference in the quality and quantity of iron in healthy vs. diseased tissue?

Experimental system:

Rodent model of acute injury (spinal cord injury)

Rats: Naiive (healthy) and Injured (diseased)

Tissues analyzed: spleen, spinal cord

Perls' Stain (spinal cord)

MFM analysis

Roughness of MFM signal

Magnetic force imaging of a chain of biogenic magnetite and Monte Carlo analysis of tip–particle interaction André Körnig et al 2014 J. Phys. D: Appl. Phys. 47 235403 doi:10.1088/0022-3727/47/23/235403

Parameters affecting MFM roughness

- Density of ferritin(iron)
- Size of ferritin (iron)
- Oxidation state of ferritin iron
 -Magnetite (Fe²⁺) > Ferrihydrite (Fe³⁺)

TEM analysis

EELS spectroscopy

TEM analysis: lysosome size and density

EELS analysis: oxidative state of iron

MFM analysis of diseased tissue

Objective:

Is there a difference in the **quality** and **quantity** of iron in healthy vs. diseased tissue?

- Size of lysosomes is reduced in injured tissues
- No major differences in oxidation state between injured and naïve animals

Indirect MFM

- Probe does not get contaminated
- Samples can be kept in a fluids
- Scanning at multiple lift heights not required
- Multimodal Imaging is possible (MFM, TEM, Light)

ID-MFM of ferritin

Ferritin density

- Ferritin density in lysosomes (in-vivo) is much higher than that which can be achieved with purified ferritin (in-vitro)
- Direct MFM signal could only be obtained from lysosomal ferritin in tissue sections

Direct MFM of iron oxide nanoparticles

ID MFM (10 nm thick membrane)

MFM probe

ID MFM (20 nm thick membrane)

Comparison of Direct and Indirect MFM

- Minimal contribution of surface topography
- Minimal contribution from van-der Waals interactions
- No compromise in strength of MFM signal
- Multimodal imaging possible for MFM, TEM and fluorescence microscopy

Conclusions

- Both Direct and ID MFM can serve as high resolution, label free tools for iron-detection in histology
- MFM signal in tissues arises from clusters of ferritin(iron)
- ID MFM can serve as a artifact free, high-throughput, multimodal technique for iron-detection in histology
- ID-MFM can be adapted for samples in fluids

Acknowledgements

Agarwal Lab

- Kevin Walsh
- Stavan Shah
- Brooke Ollander
- Angela Blissett
- Josh Sifford
- Rachel Novinc

Collaborators

- Dana Mctigue (OSU)
- •Sam Oberdick(NIST)
- Gang Bao (Rice)

Funding

- National Science Foundation
- National Institutes of Health
- Institute of Materials Research (Ohio State University)