Self-organization of complete organic monolayers via sequential postdeposition annealing

Stefano Chiodini^{1,2}, Gabriele D'Avino³, Luca Muccioli^{4,5}, Luca Bartolini^{1,6}, Denis Gentili¹, Stefano Toffanin¹ and Cristiano Albonetti¹*

Corresponding author: cristiano.albonetti@cnr.it

Organic molecular beam deposition has been used to surpass the chemical approach commonly adopted for coating SiO_x surfaces, obtaining a smooth and uniform monomolecular layer of sexithiophene that fully covers the SiO_x surface on the centimetre length scale. This result has been achieved by submitting sexithiophene sub-monolayer films grown at different substrate temperatures to a post-deposition annealing process. Through Scanning Probe Microscopy techniques, morphological, tribological and mechanical measurements have highlighted the existence of face-on molecular aggregates on the SiO_x surface and their re-organization by means of a post-annealing process. Atomistic molecular dynamics simulations complement experimental observations, shedding light on the microscopic aspects of molecular diffusion and aggregates reorganization. Exploiting the molecular reorganization upon post-annealing, almost perfect 6T monolayers were grown through a sequence of deposition and annealing steps. This preparation technique represents a new route for changing surface properties by using high controlled monomolecular layers.

¹Consiglio Nazionale delle Ricerche - Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via P. Gobetti 101, 40129 Bologna, Italy.

²Departamento de Química Física, Universidad de Zaragoza, Campus Plaza San Francisco, 50009 Zaragoza, Spain ³Institut Néel, CNRS and Grenoble Alpes University, 38042 Grenoble, France.

⁴Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy

⁵Institut des Sciences Moléculaires, UMR 5255, University of Bordeaux, 33405 Talence, France.

⁶Department of Chemistry "G. Ciamician", University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy;